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Abstract 

Deriving the actual multispectral data from the output of 
the acquisition system is a key problem in the field of 
multispectral imaging. Solving it requires a correlation 
method and the training set (if any) on which the method 
relies. In this paper we propose two novel approaches in 
selecting a training set to be used for the characterisation 
of a multispectral acquisition system. In both cases the 
selected training sets will have low numerosity and broad 
applicability. We also test both approaches on the data 
obtained from a real acquisition, comparing the 
reconstructed reflectances with the measurements obtained 
using a spectrophotometre. 

Introduction 

Deriving the actual multispectral data from the output of 
the acquisition system is a key problem in the field of 
multispectral imaging. Solving it requires a correlation 
method and the training set (if any) on which the method 
relies. The output of a generic multispectral acquisition 
system may be denoted as 

 a(x) = [ ai(x) ]i , (1) 

where i is an index that varies with the filter used (or the 
spectral band examined), and x is a two-dimensional vector 
identifying the point considered within the acquired scene. 
If M filters are used, then a(x) is an M-dimensional vector. 
The reflectance of the object at point x is a function of the 
wavelength λ, and can be denoted as R(x, λ); however, 
since in practice it is not easy (or even always possible) to 
give an analytical form to R, a sampling of its value is 
customarily considered instead. The light spectrum is then 
sampled at a discrete number of values of λ, and the 
reflectance is expressed as 

 r(x) = [ R(x, λj) ]j , (2) 

where j is an index that varies with the sample 
wavelengths. If N sample values of λ are considered, then 
r(x) is an N-dimensional vector. 

To establish a correlation between the system output 
and the corresponding reflectance, the system 
characterisation function 

 )()( xrxa a  (3) 

must be described or estimated in some way; this is usually 
done by means of an empirical model based on a chosen 
training set and correlation method (such as, for instance, 
linear models1 or polynomial regression2). The quality of 
the estimation depends on the correlation method and 
training set selected: it improves if a ‘good’ training set is 
available while a ‘bad’ training set may negatively affect 
the resulting estimation and a certain correlation method 
may be rejected because it appears to yield poor results, 
when these are really due to the training set. There are also 
cases in which the context dictates the use of a specific 
correlation method: in this event the quality of the 
approximation is influenced by the training set alone.  

Despite all this, the literature to date on multispectral 
acquisition seems to place little emphasis on the problem 
of choosing a ‘good’ training set. Hardeberg3 employs an 
algebraic method to select a training set of low numerosity; 
most other authors (such as Herzog et al.2) either employ as 
their training set the set of reflectances to be reconstructed, 
or simply avoid the issue. One likely cause for this 
approach is that many authors work on simulations rather 
than on real acquisitions. In real acquisitions large training 
sets are unwieldy and changing training sets often for 
different applications is inefficient, so the importance of 
having a few small training sets of broad applicability is 
more likely to be stressed. 

We present here two different approaches in selecting 
a ‘good’ training set from an initial array of available 
colours (which we call the ‘target’). By ‘good’ we mean 
that the elements in the chosen training set will be as few 
as possible and its applicability as broad as possible within 
the limits suggested by the operational context. The first 
approach, which we call the Hue Analysis Method, is 
based on colorimetric considerations; the second approach, 
which we call the Camera Output Analysis Method, is 
mainly based on algebraic and geometrical facts. We have 
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employed these methods to select different training sets 
from an initial common target, and tested the 
corresponding system characterisation models on the data 
obtained in a real acquisition. 

The Hue Analysis Method 

Ideally, we may expect the ‘representativeness’ of a 
training set to improve as the number of ‘different’ colours 
included in it increases. Since in this context colours are 
represented by their reflectances, the feature that most 
clearly sets them apart from one another is the shape of the 
reflectance curve. Although in colorimetric terms a 
reflectance curve subsumes all the characteristics of a 
colour, the property that most directly reflects the shape of 
the curve is hue. 

As the name suggests, with the Hue Analysis Method 
the selection of the training set is based on hue. Assuming 
that the reflectances of the colours in the target are known, 
the corresponding LHC coordinates are computed, and the 
L coordinate is normalised (or simply ignored) so that the 
colours are projected onto an HC plane. This plane is then 
divided into n sectors of equal angular width, n being the 
number of colours to be selected. For each sector, the 
colour inside the sector and nearest (in the sense of angular 
distance) to the central half-line (i.e., the half-line that cuts 
the sector in equal halves) is included in the training set, 
for a total of n colours (see Figure 1). In this way the 
chosen colours are as widely spaced as possible and cover 
the whole plane (i.e., the whole range of hues), avoiding 
the bias and / or local overfitting that could affect the 
resulting model were the colours chosen with no regard to 
their spatial disposition. 

 

Figure 1.  An example of how training set colours are chosen in 
the HC plane. The central half-lines of all the sectors are drawn, 
and the chosen colours are circled. 

 
The Hue Analysis Method may pose two geometrical 

issues, which arise, respectively, when no target colours lie 
within a sector (see Figure 2), or when a colour is the 
nearest to both of two neighbouring sectors (in which case 

the colour lies on the boundary between the two sectors). 
The Hue Analysis Method cannot be applied in either of 
these cases, and while the second instance is rare, the first 
may present more frequently, especially as the number of 
elements desired in the training set grows larger. However, 
in view of selecting a training set with broad applicability 
(if not a ‘universal’ training set), the initial target should 
itself include a good choice of hues and range over the 
whole HC plane; then, if either of the two situations 
described arises, the initial target must be replaced. 

 

Figure 2. No colours lie within the sectors corresponding to the 
indicated half-lines: the Hue Analysis Method cannot be applied. 

The Camera Output Analysis Method 

If the characterisation function of the acquisition system 
can be assumed to be linear, then it can be approximated 
by an empirical linear model; this model will be a linear 
function from the M-dimensional vector space of camera 
output vectors to the N-dimensional vector space of 
(sampled) reflectances. In this context, for a training set to 
be representative enough to use to reconstruct the 
reflectance of any colour, then it must span the whole 
characterisation function domain. This means that it must 
include a subset which is a basis for the vector space of the 
camera output vectors. This requirement can be met by 
simply including in the training set M colours the 
corresponding camera output vectors of which are linearly 
independent. However, although theoretically sufficient, 
this approach may not give satisfactory results. As our 
experimental results demonstrate, the characterisation 
models built on ‘randomly chosen’ training sets of linearly 
independent colours may be very imprecise. In our study, 
an analysis of the spatial distribution of the camera output 
vectors corresponding to the colours in the target showed 
that, despite the great variety in their colorimetric 
characteristics, the vectors tended to cluster together, due 
probably to the contribution of the illuminant used for the 
acquisition. Therefore, the likely cause of the bad results of 
randomly chosen training sets is the unavoidable error in 
measurement which affects the camera output vectors. 
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Although the magnitude of this error may be small, if the 
colours are close to each other, their distances and relative 
positions may be very sensitive to even small differences. 
Such differences may cause severe warping in the 
geometry of the camera output space, so that the 
decomposition of an arbitrary colour on the basis of the 
training set colours is conspicuously incorrect, and this 
may cause unsatisfactory results when reconstructing the 
corresponding reflectance. 

With the Camera Output Analysis Method we attempt 
to solve these problems by implementing a strategy to 
space the colours chosen for the training set well apart 
from one another. Principal component analysis is applied 
to all available colours, so that the principal eigenvectors 
are identified. Then, for each eigenvector in order of 
relevance, the colour not already chosen ‘nearest’ to that 
eigenvector is included in the training set, for a total of M 
vectors. The distance used to measure ‘nearness’ is the 
cosine of the angle between the camera output vector of a 
colour and the eigenvector concerned (see Figure 3). 

 

 
Figure 3. A fictional example of three eigenvectors and nine 
target colours. The colours nearest to each eigenvector in the 
sense of angular distance are marked. 

 
This strategy tries to maximise the orthogonality of the 

colours chosen for the training set, so that the impact of 
measurement errors on the geometry of the space is kept to 
a minimum. However, if a very tight clustering of the 
available colours is observed in the camera output space, 
the relative linear distance of the colours chosen for the 
training set may prove to be more important than their 
orthogonality to this end. To provide for this case, we 
designed a second version of the Camera Output Analysis 
Method to maximise the relative linear distance of training 
set colours while still taking into account their anisotropic 
spatial disposition (as described by the eigenvectors). In 
this variation all available colours are decomposed on the 
basis of the eigenvectors, and, for each eigenvector in 
order of relevance, the colour not already chosen with the 
greatest absolute coordinate on that eigenvector is included 
in the training set, for a total of M vectors (see Figure 4).  

 

Figure 4. (a) Two colours which are nearest to different 
eigenvectors in the sense of angular distance may still be close to 
each other. (b) Colours which have maximum absolute 
coordinate on those eigenvectors may be more spaced. 

 
There may be cases, however, in which even this 

approach cannot guarantee that the selected colours will be 
sufficiently spaced. Particularly, if one considers two 
eigenvectors the associated singular values of which are 
small, the colours selected in correspondence to those 
eigenvectors may still be close to each other. This happens 
because the variability over the set of the target colours of 
the coordinate associated with an eigenvector decreases as 
the associated singular value decreases: if two colours lie 
within the same ‘quadrant’ with respect to the 
corresponding eigenvectors, they are likely to be very near 
to each other. The third version of the Camera Output 
Analysis Method provides a simple although partial 
workaround to this problem: for each eigenvector, both the 
colour with the greatest coordinate and the colour with the 
smallest coordinate are selected and included in the 
training set, for a total of 2M colours. As figure 5 shows, 
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this approach usually guarantees that for each pair of 
eigenvectors there will be a corresponding pair of training 
set colours that are more distant from each other than those 
colours that would be selected using the second version of 
the method. 

 

 
Figure 5. (a) Two chosen colours corresponding to different 
eigenvectors may still be close using the second version of 
Camera Output Analysis Method. (b) Pairs of colours chosen 
with the third version will usually be more spaced.  

Comparison 

The two methods we proposed operate on different 
premises and follow different approaches, but both allow 
the selection of training sets that are widely applicable. 
The Hue Analysis Method is independent from the 
operating conditions of real acquisitions, and makes it 
possible to build a training set of any numerosity: it could 
potentially be used to select a truly ‘universal’ training set. 
However, since the spatial disposition of the colours in the 
LHC space depends on the illuminant chosen for the 

computation of the LHC coordinates, this illuminant must 
be the same as or very similar to the illuminant used in the 
acquisitions to which the resulting characterisation model 
will be applied. The selected training set will be adequate 
as long as the environmental illuminant does not change. 
The same holds true for the Camera Output Analysis 
Method, which operates on the camera output data 
obtained from a real acquisition of the target: in this case, 
the characterisation model obtained depends on the 
acquisition conditions, but may be used to reconstruct the 
reflectances of any surface acquired under the same 
conditions. The numerosity of the selected training set will 
also be low, since it depends on the number of different 
filters used / bands considered in the acquisitions.  

Experiments 

We have used the Hue Analysis Method and the three 
versions of the Camera Output Analysis Method to select 
different training sets from the colours included in the 
Macbeth Digital Camera target (MDC). Each of the 
selected training sets was employed to approximate the 
characterisation function of our multispectral acquisition 
system, and the resulting characterisation models were then 
taken to reconstruct the reflectances of all the colours in 
the MDC target from the output data obtained by a real 
acquisition (see Figure 6). 

To ensure that all the trials were conducted under the 
same operating conditions, we performed one acquisition 
of the whole MDC target and used the results with all the 
selected training sets. Our multispectral acquisition system 
consisted of a Photometrics CoolSnap digital camera with 
a resolution of 1392 by 1040 pixels and a dynamic range of 
12 bits, a high-quality Rodagon lens, a VariSpec Tunable 
Filter, and a cut-off optical filter for infrared and 
ultraviolet radiations. We used 33 different configurations 
of the Tunable Filter for band selection. Since previous 
experiments had shown that our system response function 
was linear, we adopted a linear model to approximate the 
system characterisation function; consequently, each 
selected training set was used to compute a corresponding 
linear model, employing singular value decomposition for 
system inversion. 

To evaluate the quality of the approximations, the 
reconstructed reflectances were compared with 
measurements of the same reflectances obtained using a 
Spectrolino spectrophotometre. As a measure of the 
precision of the reconstruction, we considered the 
maximum absolute difference computed on all the 
components of the reflectance vector: formally, if r = [ rj ]j 

= 1, …, M is the measured reflectance and r′= [ r′j ]j = 1, …, M is the 
reconstructed reflectance, then our distance d is defined as 

 ( ) jj
Mj

rr ′−=′
= ,...,1
max,d rr  . (4) 

We chose this distance instead of the customarily 
employed RMS for two reasons: we were more interested 
in the maximum error than in the mean error, and if our 
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distance was small then the corresponding RMS was also 
small (while the converse was not necessarily true). 

 

 

Figure 6. The whole procedure for selecting and evaluating 
training sets. 

 
 
In the case of the Hue Analysis Method, the XYZ 

coordinates of the target colours were computed, using the 
D65 illuminant and the standard 2° CIE observer, from the 
corresponding measured reflectances, and the LHC 
coordinates were then obtained by means of standard 
colorimetric formulas. The HC plane was divided into 33 
and 66 sectors, with the centre of the first sector at H = 0, 
and two training sets of corresponding numerosity were 
selected. These values were chosen to allow comparison 
with the results obtained using the Camera Output Analysis 
Method. Finally, for each model/training set we recon-
structed the reflectances of the colours in the test set (the 
MDC target), and compared them with the measured 
reflec-tances we had obtained: the results are shown in 
Table 1. 

Table 1. Maximum and mean errors for the Hue 
Analysis Method on the MDC target 
Hue Analysis Method Max Error Mean Error 
33 colours 0.0856 0.0076 
66 colours 0.0787 0.0061 

Each version of the Camera Output Analysis Method 
was used to select a training set of the proper numerosity. 
We then reconstructed the reflectances and compared them 
to the measured reflectances. Table 2 shows the results for 
all three versions. The results obtained using three 
randomly chosen training sets of equal numerosity are also 
reported to allow a comparison. 

Table 2. Maximum and mean errors for the three 
versions of the Camera Output Analysis Method and for 
randomly chosen training sets on the MDC target 
Camera Output 
Analysis Method 

Max Error Mean Error 

33 colours – nearest 0.1382 0.0112 
33 colours – largest 
absolute coordinates 

0.0701 0.0077 

66 colours – largest / 
smallest coordinates 

0.0405 0.0053 

Randomly chosen 
training sets 

Max Error Mean Error 

33 colours – choice 1 0.1894 0.0184 
33 colours – choice 2 0.1623 0.0127 
33 colours – choice 3 0.1845 0.0132 

 
 
Since both the data and the test set used were the same 

for all the trials, a direct comparison is possible. As the 
tables show, both of our proposed methods produced 
results significantly better than those obtained with 
randomly chosen training sets. Both of the models built 
using training sets with 66 colours also yielded good 
approximations of the reflectance vectors, showing no 
degradation due to local overfitting. On the other hand, the 
results obtained using the first version of the Camera 
Output Analysis Method did not entirely meet our 
expectations. However, an analysis of the spatial 
disposition of the target colours in camera output space 
revealed that in our case the colours were rather tightly 
clustered: as we noticed above, in such a situation the first 
version of the Camera Output Analysis Method is expected 
to perform more poorly compared to the second version, 
and the experimental results are consistent with this 
expectation. 

Conclusions 

We have proposed two methods, which we have called the 
Hue Analysis Method and the Camera Output Analysis 
Method, for selecting a good training set that can employed 
in the characterisation of a multispectral acquisition 
system. The selected training sets have low numerosity and 
broad applicability, and are particularly suitable to be 
employed in real acquisitions. Both methods have been 
tested on data obtained from a real acquisition, and the 
results of the corresponding approximations are 
significantly better that those obtained using randomly 
chosen training sets of comparable numerosity. 
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